
William Blinn (wb169@columbia.edu)
David Coulthart (davec@columbia.edu)
Jay Fernandez (jjf112@columbia.ed)
Neel Goyal (neel@columbia.edu)
Jeffrey Lin (jlin@columbia.edu)

XiNES Design Document
XiNES is a Nintendo Entertainment System simulator coded in pure VHDL

and ported to the XSB-300E board, which utilizes a Xilinx Spartan FPGA. The
NES itself consists of three main parts: a customized 6502 CPU, a Picture
Processing Unit (PPU), and a memory hierarchy including the actual game ROM.
Our goal is to implement all of these to get a single commercial game to run at
full speed off of the board.

The main bulk of the project will be spent implementing the system's
PPU. We intend to use all resources available to us, including online
documentation, open source emulators, and even patented schematics (all of
which will be cited and credited). The 6502 will be obtained by using a free,
open-source VHDL implementation of the 6502, called Free-6502. It is our goal
to connect our PPU and this 6502 implementation in some way such that an NES
game will run. Running multiple games will require much more effort as the
NES uses different memory mappers for different games, thus adding to the
complexity of the project. The game we choose to run is the original Mario
Brothers.

6502 Processor

The 6502 processor is the main CPU of the NES. The VHDL component
declaration of the 6502 is:

component core_6502
 port (clk :in std_logic;
 reset :in std_logic;
 irq :in std_logic;
 nmi :in std_logic;
 addr :out std_logic_vector (15 downto 0);
 din :in std_logic_vector (7 downto 0);
 dout :out std_logic_vector (7 downto 0);
 dout_oe :out std_logic;
 wr :out std_logic;
 rd :out std_logic;
 sync :out std_logic
);
end component;

Signal descriptions
clk: The main system clock. All synchronous signals are

clocked off the rising edge of clk.
reset: An active high reset signal, asynchronous to clk.
irq: An active high, level triggered, asynchronous,

interrupt input.
nmi: A rising edge triggered non-maskable interrupt input.
addr: The address bus output.
din: Data bus input
dout: Data bus output
dout_oe: Data bus output enable, used to control external

tri-state buffers. Active high.
wr: An active high write signal
rd: An active high read signal.
sync: High during the first byte of an instruction fetch.

The 6502 processor contains 64K of memory. There are four banks of 2K for
RAM, 12K for registers, 4K for expansion modules, 8K for WRAM (which is used
for games that allow saving), and two banks of 16K for Program ROM.

Registers $2006 and $2007 are used for reading from and writing data to
the VRAM. The address in VRAM to be read from or written to is specified in
$2006 and the data to be read or written is specified in $2007. When reading
from register $2007, the first read is invalid and needs to be discarded.

The Line Doubler

The goal of the line doubler is to enlarge the image onscreen so that it is
easier to see. To accomplish this, we will copy every pixel so that for every one
pixel we had before we will have four new ones. Each pixel will be copied once
to the position immediately to the right, then the same line will be drawn twice
to given the effect of enlarging. For example, two lines that looked like this:

Xi@
NES

will be doubled to yield this:
XXii@@
XXii@@
NNEESS
NNEESS

The technique used will be very similar to the one in lab 5 for Embedded
Systems Design. The interface presented to the PPU will be one that emphasizes
simplicity: the input will be the bits corresponding to the pixel that needs to be
displayed, a pixel clock and a line clock.

The PPU will send the line doubler at half or 1/4 the speed that the line
doubler operates. The line doubler will use the extra clock cycles to display the
pixel 2 or 4 times.

There are two possible modes of operation of the line doubler. In the
first, the line doubler will save the pixels being outputted on each line and
display the same line twice, one after another. The result would be something
like this:

XX

XXii

XXii@@

XXii@@
XX

XXii@@
XXii

XXii@@
XXii@@

In this case, the PPU would need to stall every other line while the line
doubler outputted the same line and the line doubler would need to run at
twice the clock of the PPU.

The other mode of operation that might be possible is to have the line
doubler output the signals for the two lines at the same time. In this case the
line doubler would need to run at 4x the clock speed of the PPU.

XX
XX

XXii
XXii

XXii@@
XXii@@

The end result of the line doubler will be a signal that is 512x480 instead of the
native resolution of the NES, which is 256x240.

Multi-Memory Controllers

Multi-Memory Controllers (MMCs) are used in cartridges for addressing
extra memory. The 6502 processor's memory limit is 64K, of which 32K is used
for the Program ROM. The PPU's VRAM memory limit is 16K. If either the 6502
or the PPU’s memory limit is exceeded, an MMC is needed to address the extra
memory.

Of note, even though the 6502 supports 64K memory, there is only 32K
available for Program ROM, so ROMs larger than 32K will require the use of an
MMC.

The Program ROM memory region on the CPU is divided into two banks of
16K each. If a ROM is smaller than 16K, it will load into the upper bank of
memory. Larger ROMs will load into the lower 16K bank as well.

The ROM

The ROM image that we will be using initially is for the game Mario
Brothers. It was chosen for its simplicity. The ROM is less than 16K in size,
which means that it does not require the use of an MMC. The game also has no
scrolling involved so there will be a less complex PPU.

Memory Hierarchy

Figure 1 depicts the two main memory components of the NES – the 64
KB main memory interfacing with the 6502 CPU and the 16 KB Video RAM
(VRAM) used by the Picture Processing Unit (PPU). Because of these high

memory requirements, the two memories will be stored in SRAM. The 256-byte
Sprite RAM, which is not a part of either the CPU or PPU address space, is the
remaining piece of the memory hierarchy of the NES.
CPU Memory

The NES’s CPU memory is divided for different uses as follows:
Starting
Address

Size
(bytes)

Use

0x0000 2K RAM
0x0800 2K RAM (mirrored from 0x0000)
0x1000 2K RAM (mirrored from 0x0000)
0x1800 2K RAM (mirrored from 0x0000)
0x2000 12K Registers
0x5000 4K Expansion Modules
0x6000 8K Writeable RAM (WRAM)
0x8000 16K Program ROM (PRG-ROM) (Lower)
0xC000 16K PRG-ROM (Upper)

While we will provide the entire CPU memory address space (to avoid the
need for complicated address translation), memory associated with certain
advanced functionality will remain unused. In particular, the WRAM used by
games for saving state and the expansion module memory will be unused. The
PRG-ROM is used to hold the actual game code. Because our simplified design
does not include a Multi-Memory Controller only the Upper PRG-ROM will be
used to hold games up to 16 KB in size (Mario Brothers).

The registers are used primarily for communicating with the PPU,
outputting sound, and managing the joystick. The PPU-associated registers are
explained further in the PPU section of the document, while the sound registers
are ignored because it is unlikely that our limited implementation will include

sound support. Registers at addresses 0x4016 and 0x4017 correspond to
joystick 1 and joystick 2, respectively.
PPU Memory

The division of the PPU VRAM is as follows:
Starting
Address

Size
(bytes)

Use

0x0000 4K Pattern Table #0
0x1000 4K Pattern Table #1
0x2000 960 Name Table #0
0x23C0 64 Attribute Table #0
0x2400 960 Name Table #1
0x27C0 64 Attribute Table #1
0x2800 960 Name Table #2 (based on mirroring)
0x2BC0 64 Attribute Table #2 (based on mirroring)
0x2C00 960 Name Table #3 (based on mirroring)
0x2FC0 64 Attribute Table #3 (based on mirroring)
0x3000 3840 EMPTY
0x3F00 16 Image Palette
0x3F10 16 Sprite Palette
0x3F20 224 EMPTY

The name tables are used to store indices for obtaining the actual color
information stored in the matching pattern table. The address for the color
information is calculated as: (IndexValue * 16) + PatternTableBaseAddress. Only
two bits of the color information for a pixel (out of the four used for each pixel)
are found in the pattern table. The upper two bits of color for each pixel are
obtained from the attribute table. Each byte in the attribute table holds the
upper two bits for sixteen 8x8 tiles (the same upper two bits are used for each
set of four tiles).

Sprite RAM

The NES supports up to 64 concurrent sprites. The Sprite RAM is used to
hold the attributes of these sprites. Each entry consists of: x and y coordinates
(of upper left corner), sprite tile index number (for obtaining the actual sprite
pattern from the pattern table in PPU memory), horizontal/vertical flip, priority
(above/behind background), and the upper two bits of color (color selection is
explained in the PPU section).

Picture Processing Unit

The Picture Processing Unit (PPU) is the graphical hardware behind
the NES. The PPU can be thought of as a block with input and output pins.

component declaration of the PPU is:
component PPU
 port (clk :in std_logic;
 reset :in std_logic;
 cpu_data :in std_logic_vector (7 downto 0);

cpu_address :in std_logic_vector (7 downto 0);
 vram_address :in std_logic_vector (13 downto 0);
 vram_data :in std_logic_vector (7 downto 0);
 color :out std_logic_vector (3 downto 0);
 vramOut_data :out std_logic_vector (7 downto 0);
 vramOut_address :out std_logic_vector (13 downto 0);
);
end component;

The PPU is the only component that has access to VRAM and Sprite RAM,
meaning the CPU must access the PPU in order to either write or read from
these memory spaces. Fortunately, this can be done by writing to various 8-bit
registers, acting as I/O ports, that the CPU can see. Here is a list of them and
the hexadecimal address the CPU sees them as:

$2000: PPU Control Register which determines where in VRAM
and Sprite RAM data is being written to or read from and the
size of the sprites.
$2001: PPU Control Register which determines various
properties regarding the image being displayed, such as the
background color and clipping information.
$2002: PPU Status register which changes to indicate whether
the screen needs to be refreshed, a sprite needs to be
displayed, or too many sprites are on a line at a time.
$2003: This register holds the address of Sprite RAM to read
or write to.
$2004: Holds the data being written to or read from Sprite
RAM specified by the address in $2003.
$2005: Register which handles information regarding screen
scrolling. Since we are trying to simulate a very simple game,
we will probably not use this.
$2006: This is a double write register that determines the
location in VRAM to be written to or read from. Since VRAM is
addressed via 14-bits, the first write writes the upper byte of

the address, and the lower byte is written second.
$2007: Similar to $2004, this holds the data being written to
or read from VRAM.

In addition to being the mediator between the CPU and VRAM and Sprite
RAM, the PPU generates the graphics outputted to the display. The NES
displays graphics as tiles, each 8 pixels by 8 pixels in dimension. Sprites are
either 8x8 or 8x16 pixels. Each pixel in a tile is generated by 4-bits taken from
VRAM (or Sprite RAM if the tile pertains to a sprite) which are then converted to
RGB via a color lookup table.

Two bytes from the pattern tables in VRAM and a byte from the attribute
table are needed to generate this code. To draw the 5th pixel in a line on a tile,
the fifth bit in the first pattern table byte is appended to the fifth bit of the
second pattern table byte. Two bits from the attribute table are appended to
the front of these two bits based on the location of the tile. This makes up the

4 bit code, which also illustrates the NES's ability to only display 16 colors on
the screen at a time.

The attribute byte should be explained a bit more in detail. Essentially,
this byte holds information for 16 tiles, arranged in a 4x4 manner. The NTSC
NES has a resolution of 256x240, meaning 32x30 tiles. This would imply that 8
attribute bytes are needed in order to draw the whole image. Assuming the 8-
bit registers are bit numbered 7 down to 0, bits 1 and 0 represent the upper
two bits of the color code of the upper left 4 tiles in the 4x4 tile arrangement.
Bits 3 and 2 handle the upper right 4 tiles, and bits 5 and 4 handle the lower
left.

It is important to note that the PPU is not driven by instructions and acts
based on its registers. It basically reacts to whenever a VBlank occurs, which is
stored in register $2002, and begins to redraw the image on the screen line by
line.

There is a on-chip motion picture attribute table memory which stores
the attributes for sprite data for an entire frame. The CPU determines what is
stored in the memory by setting the motion picture memory address register.
While the previous line is being scanned, the sprite characters to be displayed
on the next line is compared with each character in the motion picture attribute
table and if they agree then the character is out into a temporary memory space
which can store up to 8 characters. (So, there is a maximum of 8 sprites per
line) The motion picture buffer memory is divided into 3 parts. The first part
determines from the temporary memory the horizontal position of the sprite.

The second holds 3 bits, 2 bits of color data and a 1 bit priority. The third is
data which is read from the motion picture character pattern generator in
accordance with the character number in temporary memory. The 5 bits are
then outputted to a MUX.

The 4 bits of still picture data is read from VRAM memory. VRAM is
addressed with 14 bits. (The address where data should be read from is stored
in the picture address register $2006) For the still data the VRAM data returns
2 bits for a character pattern and 2 bits for a color all for a single pixel. These
4 bits are fed into a multiplexer.

There is a main multiplexer in the PPU and the basic function is to
determine whether a pixel of sprite data needs to be displayed or still data.
The MUX receives 9 bits as input, 4 bits corresponding to still data and 5 bits
corresponding to sprite data which comes from the motion picture buffer
memory. The first two bits of sprite and still data are fed into a simple priority
determining circuit to determine what data will pass though the transistors
which are controlled by the clock. 4 bits are then the final output for the PPU

Figure 1. Block Diagram of Basic NES Design

Figure 2 (Following Page). Detailed Diagram of NES Picture Processing Unit

References

“Free-6502 Interface.” http://www.free-ip.com/6502/interface.htm

“Nintendo Entertainment System Documentation v. 0.40.”
http://db.gamefaqs.com/console/nes/file/nes_tech.txt

Ueda et al. “TV Game System Having Reduced Memory Needs.” United States
Patent #4,824,106. April 25, 1989.

